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Joost Vossebeld, SUSY13 

HoJJ 

6 

Excellent J-jet separation in 1st layer of 
Liquid Argon calorimeter.  
 
Only ~25% of background is from jet-jet 
or J-jet events 

J S0 

Small branching fraction, but excellent mass resolution. 
Sensitivity to spin (0+/2+) / excludes spin 1 (Landau-Yang) 
 

Extract signal in simultaneous fit of signal and 
background. 

arXiv:1307.1427  

Compatibility with Being SM Higgs"
Excesses seen in ZZ, WW and γγ in both experiments!
Signal strength ~consistent with SM Higgs!

26-Aug-13! Sridhara Dasu (Wisconsin)! 23!

Statistical and 
systematic errors 

included 

CMS HIG-13-005!

68% and 95% 

Details on CMS 
Higgs combination: 
Roberto Covarelli’s 

talk in Monday  
parallel session. 

Joost Vossebeld, SUSY13 

arXiv:1307.1427  Couplings combination 
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Overall signal strength: 
21.0
18.033.1 �

� P

Combined results HoJJ, HoZZ*o4l, HoWW*olQlQ channels, including 
VBF or VH enhanced cases. 

Statistical, systematic and theory  
uncertainties are already comparable. 

Higgs	  boson	  is	  discovered	  
	  at	  	  ~	  125.5	  GeV	

No	  evidence	  beyond	  SM	  so	  far	



(1)	  Naturalness	  (Hierarchy	  problem)	

(2)	  Stability	  of	  the	  Higgs	  poten;al	

blowup	

Unstable	

indicates	  vanishing	  quar)c	  Higgs	  coupling	  
	  at	  high	  energy	  scale	  (e.g.	  Planck)	

What	  do	  the	  LHC	  results	  tell	  us	  about	  Higgs	  poten)al	  ?	

Strong	  constraints	  on	  TeV	  susy	  suggests	  that	  	  
	  we	  need	  to	  reconsider	  the	  naturalness	  as	  the	  guiding	  principle	  	  
	  to	  go	  beyond	  the	  SM.	
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	  Naturalness	  (Hierarchy	  problem):	  	  	  	  	  text	  book	  explana)on	

Quadra)c	  divergence	  

Quadra)c	  divergence	  in	  Higgs	  mass	  term	

Cancella)on	  of	  Quadra)c	  divergence	  	  
	  	  (supersymmetry	  	  etc.)	
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(1)	  Naturalness	  problem	



Ques;on:	  	  Is	  quadra;c	  divergence	  really	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  the	  issue	  of	  the	  hierarchy	  problem?	

・　It	  can	  be	  always	  subtracted	  with	  no	  effects	  on	  physics.	  
	  　　(subtrac)ve	  renormaliza)on)	  
　It	  is	  different	  from	  logarithmic	  divergences	  (mul)plica)ve	  renorm.)	  
	  
・　No	  quadra)c	  divergences	  in	  dimensional	  regulariza)on.	  
	  　　(minimal	  subtrac)on)	  

See	  e.g.	  
	  Bardeen	  (1995)	  
	  Hill	  	  (2005)	  	  
	  Fujikawa	  (2011)	  
	  Aoki	  Iso	  (2012)	  
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Bardeen	  (1995	  @	  Ontake	  summer	  ins)tute)	

Standard	  model	  is	  classically	  scale	  invariant	  if	  Higgs	  mass	  term	  is	  absent.	  

Quantum	  anomaly	  breaks	  the	  invariance	  (if	  not	  conformal	  )	

The	  common	  wisdom	  is	  that	  the	  breaking	  is	  not	  sob	  and	  	  we	  have	

Bardeen	  argued	  that	  it	  should	  be	
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if	  no	  intermediate	  scales	  exist.	



Support	  for	  Bardeen	  by	  Wilsonian	  RG	

Scalar	  field	  in	  d-‐dim	

Lafce	  cutoff	  	

All	  quan))es	  (mass,	  field)	  are	  dimensionless.	  	  	  
Measured	  in	  units	  of	  the	  lafce	  cut-‐off.	

2	  steps	  of	  RG	  transforma)on	
Step	  1:	  Integra)on	  over	  higher	  momentum	  modes	

Step	  2:	  Rescaling	  	

Remaining	  modes	

	  is	  chosen	  so	  that	  the	  kine)c	  term	  becomes	  canonical.	

-‐	  π	 π	

H.	  Aoki,	  SI	  (2012)	
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RG	  transforma)ons	

Solu)on	  	
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Cri;cal	  line	

Quadra)c	  divergence	  	  	  determines	  the	  posi)on	  of	  cri)cal	  line.	  
Scaling	  behavior	  of	  RG	  flow	  is	  determined	  only	  by	  Logarithmic	  div.	

cri;cal	  line	

Such	  property	  does	  hold	  at	  all	  orders	  of	  perturba)ons.	
Satoshi	  Iso	 9	

Quadra)c	  divergence	  from	  Wilsonian	  Renormaliza)on	  Group	

Quadra)c	  divergence	



Con)nuum	  Limit	

In	  terms	  of	  the	  dimensionless	  parameter	  m,	  	  
	  we	  need	  to	  fine-‐tune	  the	  bare	  mass	  close	  to	  the	  cri)cal	  line.	

In	  terms	  of	  dimensionful	  parameter,	  	

This	  type	  of	  tuning	  has	  nothing	  to	  do	  with	  	  quadra)c	  divergences.	

Log	  scaling	  of	  mass	  term	
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FP	

*	
FP	

*	

With	  quadra)c	  div.	 No	  quadra)c	  div.	

Fine	  -‐	  tuning	  of	  the	  distance	  from	  the	  cri;cal	  line	  	  =	  	  Low	  energy	  mass	  scale	

This	  fine-‐tuning	  always	  occurs	  for	  both	  non-‐susy	  and	  susy.	  
	  i.e.	  It	  has	  nothing	  to	  do	  with	  quadra)c	  divergences.	  
Most	  natural	  possibility	  is	  to	  put	  the	  theory	  on	  the	  cri)cal	  line.	

satoshi	  iso	 11	



	  	  	  What	  is	  the	  real	  issue	  	  
of	  the	  Hierarchy	  problem?	

1.  Ini)al	  boundary	  condi)on	  at	  UV	  
	  	  	  	  the	  same	  for	  both	  susy	  and	  non-‐susy	  	  
	  
2.  Mixing	  of	  	  mul)ple	  	  relevant	  operators	  
	  	  	  	  TeV	  susy	  can	  avoid	  this	  problem.	  	  

satoshi	  iso	 12	



Mixing	  of	  	  mul)ple	  	  relevant	  operators	  by	  Logarithmic	  div.	

Solu)on	  à	

Cri)cal	  line	

Example:	 Mixing	  of	  weak	  scale	  with	  
Gut	  scale	

satoshi	  iso	 13	
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1.  Power	  	  divergences	  	  	  	  	  	  	  	  	  Λ2	  	  	  
It	  can	  be	  simply	  subtracted	  at	  UV	  scale	  =	  boundary	  	  condi)on	  at	  UV	  	  	  	  	  	  
Once	  subtracted,	  no	  longer	  appears	  in	  IR.	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2.  Logarithmic	  divergences	  	  	  	  	  	  m2	  log	  (Λ/m)	  
	  
	  
3.  Large	  Logarithmic	  divergences:	  	  M2	  log	  (Λ/M)	  	
	  
	  
	

	  	  	  m	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <<	  	  	  	  	  	  	  	  	  	  	  	  	  	  M	  
Low	  energy	  physics	  	  	  	  	  	  	  	  	  	  	  	  High	  energy	  physics	

Classifica)on	  of	  divergences	  	

scalar	  mass	  within	  SM	

Heavy	  par)cles	  beyond	  SM	δm2 =
λmixM2

16π2
log(Λ2/M2)

1
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In	  order	  to	  solve	  the	  “naturalness	  problem”,	  	  	  
of	  IR	  theory	  embedded	  in	  UV	  comple)on	  theory,	  	  we	  need	  to	  control	  
	  
(a)	  	  “	  MPL

2	  term”	  à	  correct	  boundary	  condi)on	  at	  Planck	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  The	  most	  natural	  b.c.	  is	  	  NO	  MASS	  TERMS	  	  at	  Planck	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  (	  =	  classical	  conformal	  )	  
	  
	  
(b)	  “large	  logarithmic	  divergence”	  	  by	  mixing	  with	  a	  large	  mass	  	  M	  
	  	  	  	  	  	  No	  large	  intermediate	  scales	  	  beyond	  EW	  up	  to	  Planck	  

“Classical	  conformal	  theory	  	  with	  no	  intermediate	  scale”	  
	  	  	  can	  be	  an	  alterna)ve	  solu)on	  to	  the	  naturalness	  problem.	  

satoshi	  iso	
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(2)	  Stability	  of	  Vacuum	  
	  	  	  a	  hint	  for	  Planck	  scale	  physics	  
	  	  	  	  	  from	  MH=126	  GeV	  	

satoshi	  iso	

〈h〉	  =	  246	  GeV	  	

mH	  determines	  λ.	



RGE	  @1-‐loop	

RGE	  improved	  effec)ve	  poten)al	  	  for	  large	  field	  (h	  >>	  v)	

Already	  known	

It	  is	  related	  to	  Higgs	  mass	  as	  	  	  	

Higgs	  mass	  controls	  the	  behavior	  of	  Higgs	  poten)al	  at	  large	  values	  of	  h.	

This	  gives	  two	  bounds	  for	  Higgs	  mass	  
(1)	  	  The	  quar)c	  coupling	  does	  not	  blow	  up	  un)l	  UV	  cut-‐off.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  M	  <	  180	  GeV	  	  	  (triviality	  bound)	  
	  (2)	  The	  quar)c	  coupling	  does	  not	  become	  nega)ve	  	  
	  	  	  	  	  	  	  	  	  	  	  	  un)l	  UV	  cut-‐off.	  	  	  	  (Stability	  bound)	  
	  
	  	  	  	  	  	  	  M	  =	  125	  GeV	  Higgs	  is	  very	  close	  to	  the	  stability	  bound.	

17	

125	



New	  physics	  at	  1012	  GeV	  
is	  necessary	  to	  stabilize	  the	  vacuum	

Flat	  Higgs	  poten)al	  	  
	  at	  Planck	  scale	

18	

very	  sensi)ve	  to	  top	  quark	  mass	
Elias-‐Miro	  et.al.(12)	  
Alkhin,	  Djouadi,	  Moch	  (12)	  	  

satoshi	  iso	

(Also	  sensi)ve	  to	  higher	  dim	  op.	  and	  nonperturba)ve	  behavior	  of	  RG)	



If	  this	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  the	  case	  ?	

19	

Direct	  window	  to	  Planck	  scale	  	
Froggau	  Nielsen	  (96)	  
M.Shaposhnikov	  (07)	  	

satoshi	  iso	
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flat	  poten)al	  V(H)=0	  at	  Planck.	

Indica)on	  to	  the	  Higgs	  poten)al	

satoshi	  iso	

φ	

flat	  poten)al	

MPL	

EWSB	  @	  MEW	

Radia)vely	  generate	 Coleman-‐Weinberg	  mechanism	



But	  CW	  does	  not	  work	  in	  SM.	  
the	  large	  top	  Yukawa	  coupling	  invalidates	  the	  CW	  mechanism	

Extension	  of	  SM	  is	  necessary	  !	  

21	

“Occam’s	  razor”	  scenario	  	  
that	  can	  explain　　　　　　・	  126	  GeV	  Higgs	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  　　　　　　　　　　 ・ Naturalness	  problem	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ・ ν	  oscilla)on,	  baryon	  asymmetry	  

	  (B-‐L)	  extension	  of	  SM	  with	  flat	  Higgs	  poten)al	  at	  Planck	  	

SM	
B-‐L	  	  sector	  

・U(1)B-‐L	  gauge	  
・SM	  singlet	  scalar	  φ	  

・Right-‐handed	  ν	

N	  Okada,	  Y	  Orikasa,	  	  
	  M.	  Hashimoto	  &	  SI	  	  
	  	  	  0902.4050	  (PLB)	  
	  	  	  0909.0128	  (PRD)	  
	  	  	  	  	  	  

Meissner	  Nicolai	  (07)	  
Foot	  et	  	  al	  (07)	
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B-‐L	  symmetry	  is	  radia)vely	  broken	  via	  CW	  mechanism.	  	  
How	  does	  the	  EWSB	  occur	  ?	

classically	  
conformal	

126	  GeV	 key	  to	  relate	  EW	  and	  B-‐L	  @TeV	

22	

Flat	  poten)al	  is	  suggested	  by	  LHC	  	

Can	  the	  small	  scalar	  mixing	  be	  realized	  naturally?	

The	  coefficient	  must	  be	  	  small	  and	  nega;ve.	

Satoshi	  Iso	

à	  Yes	  	  (Orikasa,	  SI	  	  2012)	  :	  1210.2848(PTEP)	  
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	  	  U(1)	  mixing	  is	  radia)vely	  generated	  	

Then	  a	  small	  nega)ve	  scalar	  mixing	  is	  radia)vely	  generated	

The	  scalar	  mixing	  triggers	  EWSB.	

U(1)_Y	U(1)_(B-‐L)	

Scalar	  mixing	  can	  be	  generated	  via	  gauge	  mixing	  of	  U(1)Y	  and	  U(1)B-‐L	

The	  scalar	  mixing	  is	  very	  small	  and	  nega)ve.	  
This	  triggers	  the	  EWSB.	  
	  	  	  	  	  	  à	  small	  hierarchy	  between	  B-‐L	  scale	  and	  EW	  scale.	
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MB-‐L	  =	  3.55	  TeV,	  	  	  	  	  
mφ	  =	  200	  GeV,	  	  	  	  
mN=	  2.8	  TeV	  
	  
MEWSB	  =	  246	  GeV,	  	  	  
mH	  =	  126	  GeV	  	  	

A	  typical	  behavior	  of	  RGE	

7
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FIG. 3: The RG flows of λ2 and λ3 in the model with many singlet fermions. We took the number of the singlets to one
hundred. We also used vχ = 10 TeV, mφ = 69 GeV and yS(vχ) = 0.1151.

VI. SUMMARY AND DISCUSSIONS

SUMMARY

Appendix A: RGE’s

The RGE’s for the SM gauge couplings are

(16π2)µ
∂

∂µ
gi = cig

3
i , (A1)

with

cY =
41

6
, c2 = −19

6
, c3 = −7, (A2)

The RGE’s of g′1 and g̃ are [4]

(16π2)µ
∂

∂µ
g′1 = g′1

[
a g′1

2 + 2b g′1 g̃ + cY g̃
2

]
, (A3)

(16π2)µ
∂

∂µ
g̃ = g̃

[
cY (g̃2 + 2g2Y ) + a g′1

2

]
+ 2b g′1(g̃

2 + g2Y ), (A4)

with

a =
32

9
Ng +

4

3
Nχ, b =

16

9
Ng . (A5)

where Ng represents the number of generations which couples to the U(1)B−L gauge field, and Nχ (= 1) is the number
of χ.
The RGE for the top-Yukawa coupling is

(16π2)µ
∂

∂µ
yt = yt

[
9

2
y2t −

(
8g23 +

9

4
g22 +

17

12
(g2Y + g̃2) +

2

3
g′1

2 +
5

3
g̃ g′1

) ]
, (A6)

λmix	
A	  small	  nega)ve	  	  
	  scalar	  mixing	  is	  	  
	  generated	  !!	

3
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FIG. 1: The RG flows imposing g̃(Λ) = 0 and λ1,3(Λ) = 0 in the B − L model. We took Λ = 2.435 × 1018, vχ = 3.55 TeV,
mφ = 200 GeV, and yM (vχ) = 0.39.

III. RADIATIVE BREAKING SCENARIO

Let us study the radiative breaking scenario via the Coleman-Weinberg mechanism [5–7].
In order to analyze the behavior of the improved effective potential, we need to study the renormalization group

equations (RGE’s). A set of the RGE’s are shown in Appendix A. Among them, the RGE for the quartic coupling of
χ is essential;

(8π2)µ
∂λ2

∂µ
= 10λ2

2 + λ2
3 − 8Ny4M + 4Nλ2y

2
M + 48g′1

4 − 24λ2g
′
1
2, (16)

where N is the number of the right handed neutrinos having large Majorana couplings and we simply took

Y ij
M = diag(yM , · · · , 0, · · · ), and tr[(Y ij

M )2 (4)] = Ny2 (4)
M . The coefficient of the y4M term is 16 times larger than

the corresponding value in Ref. [4]1. This difference is crucial as we will discuss later.
As studied in Refs. [5–7], the stationary condition of the effective potential yields

λ2(µ = vχ) ≃ − 1

4π2

(
−Ny4M + 6g′1

4

)
, (17)

where we ignored O(λ2
2) and O(λ2

3). The second derivative of the effective potential gives

m2
φ ≃ −4λ2v

2
χ, (18)

where χ = 1√
2
(vχ + φ+ iη) and mφ represents the mass of the extra Higgs φ.

The EWSB takes place via the H–χ mixing term λ3|H|2|χ|2,

v2H =
−λ3

λ1
v2χ . (19)

1 The authors of Ref. [4] acknowledged the difference.

λH	

λmix	

λφ	

gmix	

gB-‐L	



Predic)on	  of	  the	  model	

In	  order	  to	  realize	  EWSB	  at	  246	  GeV,	   	  
B-‐L	  scale	  must	  be	  around	  TeV	  (for	  a	  typical	  value	  of	  αB-‐L	  ).	  	  
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	  Flatland	  model	

+	  mφ
2φ2	  +	  λφφ4	
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Can	  we	  further	  throw	  away	  the	  last	  term	  ?	  	

Radia)ve	  genera)on	  of	  	  
	  scalar	  poten)al	  from	  nothing	  !!	
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Posi)ve	  β	  func)on	  at	  IR	

λφ	

If	  SSB	  occurs	  in	  Flatland,	  we	  need	  a	  behavior	  like	

We thank the participants in the workshop for useful discussions. We also acknowledge Nobuchika

Okada for collaborations in the early stage. The research is supported in part by Grant-in-Aid

for Scientific Research (19540316) from MEXT, Japan (S.I), Grant-in-Aid for Scientific research
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Appendix A

We list the 1-loop renormalization group equations of various coupling constants in the B − L

model [30]. In the body of the paper, we also use αλ,a = λa/4π for the scalar quartic couplings,

αA = g2A/4π for the gauge couplings and αi
N = (Y i

N)
2/4π for the Yukawa couplings.

The RGEs of the gauge couplings are given by

dgY
dt

=
1

16π2

[

41

6
g3Y

]

, (29)

dgB−L

dt
=

1

16π2

[

12g3B−L + 2
16

3
g2B−Lgmix +

41

6
gB−Lg

2

mix

]

, (30)

dgmix

dt
=

1

16π2

[

41

6
gmix

(

g2mix + 2g2Y
)

+ 2
16

3
gB−L

(

g2mix + g2Y
)

+ 12g2B−Lgmix

]

. (31)

The RGEs for the Yukawa couplings are

dYt

dt
=

1

16π2
Yt

(

9

2
Y 2

t − 8g23 −
9

4
g2 −

17

12
g2Y −

17

12
g2mix −

2

3
g2B−L −

5

3
gmixgB−L

)

, (32)

dYN

dt
=

1

16π2
YN

(

Y 2

N +
1

2
Tr

[

Y 2

N

]

− 6g2B−L

)

. (33)

Finally the RGEs for the scalar quartic couplings are given by

dλH

dt
=

1

16π2

(

24λ2

H + λ2

mix − 6Y 4

t +
9

8
g4 +

3

8
g4Y +

3

4
g2g2Y +

3

4
g2g2mix +

3

4
g2Y g

2

mix +
3

8
g4mix

+λH

(

12Y 2

t − 9g2 − 3g2Y − 3g2mix

))

, (34)

dλΦ

dt
=

1

16π2

(

20λ2

Φ + 2λ2

mix −
1

2
Tr

[

Y 4

N

]

+ 96g4B−L + λΦ

(

2Tr
[

Y 2

N

]

− 48g2B−L

)

)

, (35)

dλmix

dt
=

1

16π2

[

λmix

(

12λH + 8λΦ + 4λmix + 6Y 2

t −
9

2
g2 −

3

2
g2Y −

3

2
g2mix + Tr

[

Y 2

N

]

− 24g2B−L

)

+12g2mixg
2

B−L

]

.(36)
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Nega)ve	  β	  func)on	  at	  UV	

Balance	  between	  YN	  and	  gB-‐L	  is	  necessary	

E.Chun,	  S.Jung,	  H.Lee	  (2013)	  	  
	  
	  
	  
Hashimoto,	  Orikasa,	  SI	  (2013)	  
	  	  	  	  	  	  	  	  	  	  necessary	  condi)on	  	  
	  	  	  	  	  	  	  	  	  	  	  for	  flatland	  scenario	  
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A	  necessary	  and	  (almost)	  sufficient	  condi)on	  for	  
	  	  both	  CW	  mechanism	  at	  IR	  and	  Flatland	  at	  UV	  to	  occur	  

Gauge-‐Yukawa-‐Higgs	  system	  
	  (abelian	  gauge	  theory	  with	  a	  scalar	  φ	  and	  a	  fermion)	  
　　g:	  	  	  gauge	  coupling	  
	  	  	  	  	  	  y:	  	  	  Yukawa	  coupling	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  λ:	  	  	  quar)c	  self-‐coupling	  of	  scalar	  	  	  	  λ	  φ4	

5

Let us consider a system of RGE’s for the Abelian gauge theory:

βg ≡ µ
∂

∂µ
g =

a

16π2
g3, (20)

βy ≡ µ
∂

∂µ
y =

y

16π2

[
by2 − cg2

]
, (21)

βλ ≡ µ
∂

∂µ
λ =

1

16π2

[
− dy4 + fg4 + · · ·

]
, (22)

where a, b, c, d, f are model-dependent positive constants and the last · · · term in βλ includes λ2, λg2, etc., which are
irrelevant in the following analysis.
The solution of the RGE’s for g and y is well-known:

1

g2(µ)
=

1

g2(M)
− a

8π2
ln

µ

M
, (23)

1

y2(µ)
=

b

a+ c

1

g2(µ)

[
1 + ξ

(
g2(µ)

g2(M)

)1+ c
a
]
, (24)

with

ξ ≡ a+ c

b

g2(M)

y2(M)
− 1, (25)

where M represents an infrared scale and µ is the renormalization point. Note that ξ = 0 corresponds to the fixed
point solution [9].
In order to obtain λ(Λ) = 0, βλ < 0 is required at µ = Λ. It reads

√
f

y2(Λ)
<

√
d

g2(Λ)
. (26)

By using the analytical expressions (23)–(24), we obtain

b

a+ c

√
f

d

(
1 + ξ

(
g2(Λ)

g2(M)

)1+ c
a
)

< 1 . (27)

On the other hand, the condition for the radiative breaking by the Coleman-Weinberg mechanism yields

λ(M) = − 1

64π2

(
− dy4(M) + fg4(M)

)
+O(λ2), (28)

and the scalar mass is

m2
φ ≃ −4λM2 . (29)

We then obtain

g2(M) ≃

√
16π2

f

m2
φ

M2
+

d

f
y4(M) . (30)

Noting that the high energy value g(Λ) is inevitably larger than the low energy value g(M) for the Abelian gauge
theory, i.e., a > 0, we easily find that the inequality (27) is never satisfied when ξ > 0. On the other hand, when
ξ ≤ 0, the inequality (27) can be satisfied. This ξ ≤ 0 requires

a+ c

b

g2(M)

y2(M)
≤ 1, (31)

and, by using Eq. (30), we obtain a necessary condition for λ(Λ) = 0 written only in terms of the model-dependent
parameters,

K ≡ a+ c

b

√
d

f
< 1 . (32)

	  a,	  b,	  c,	  d	  >0	
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1

I. A NECESSARY CONDITION FOR CW AT IR AND FLATLAND AT UV

We consider an abelian gauge theory coupled with a scalar and a fermion. The scalar has a quartic self-coupling
and the fermion is also coupled with the scalar field via the Yukawa coupling. The RGE’s for the system are given by

βg ≡ µ
∂

∂µ
g =

a

16π2
g3, (1)

βy ≡ µ
∂

∂µ
y =

y

16π2

[
by2 − cg2

]
, (2)

βλ ≡ µ
∂

∂µ
λ =

1

16π2

[
− dy4 + fg4 + · · ·

]
, (3)

where a, b, c, d, f are model-dependent positive constants and the last · · · term in βλ includes λ2, λg2, etc., which are
irrelevant in the following analysis.
By defining t as

16π2µ
∂

∂µ
=

∂

∂t
(4)

the RGEs are written as

ġ = ag3

ẏ = y(by2 − cg2)

λ̇ = −dy4 + fg4. (5)

From these equations, we obtain that the ration r = y/g satisfies

ṙ = bgy(r2 − r2c ), rc =

√
a+ c

b
. (6)

Hence r = rc is the IR fixed point where the ratio r approaches rc in the IR. In other words, if r > rc, the ratio r(t)
increases as t increases (UV) and, if r < rc, the ratio r(t) further decreases as t decreases.
We now assume that the symmetry is spontaneously and radiatively broken by acquiring a vev of the scalar field

φ. In order for the CW mechanism to occur, the necessary condition is

βλ ∝ −dy4 + fg4 = dg4(−r4 + r40) > 0 at IR (7)

where we have defined

r0 =

(
f

d

)1/4

. (8)

Hence, if the CW mechanism occur at IR region, t = 0, the ratio must satisfy

r(t = 0) < r0. (9)

In addition, we also assume that the potential becomes flat at a UV scale, t = tUV . Then, the β-function must be
negative because the scalar quartic coupling crosses zero from positive to negative in the UV direction. Hence

r(t = tUV ) > r0 (10)

and r(t) must be an increasing function of t. This means that r(t) must satisfy

r(tUV ) > r0 > r(t = 0) > rc. (11)

Therefore a necessary condition for the CW mechanism at IR and Flatland at UV to occur similtaneously is

rc < r0, (12)
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ẏ = y(by2 − cg2)

λ̇ = −dy4 + fg4. (5)

From these equations, we obtain that the ration r = y/g satisfies
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the RGEs are written as
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Hence r = rc is the IR fixed point where the ratio r approaches rc in the IR. In other words, if r > rc, the ratio r(t)
increases as t increases (UV) and, if r < rc, the ratio r(t) further decreases as t decreases.
We now assume that the symmetry is spontaneously and radiatively broken by acquiring a vev of the scalar field

φ. In order for the CW mechanism to occur, the necessary condition is

βλ ∝ −dy4 + fg4 = dg4(−r4 + r40) > 0 at IR (7)
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Hence, if the CW mechanism occur at IR region, t = 0, the ratio must satisfy
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which means
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√
d

f
< 1. (13)

If the condition is satisfied, we can tune the ratio r(t = 0) to lie in-between rc and r0 so that the CW mechanism is
realised in the IR.
If K is very close to 1, the ratio of the Yukawa coupling to the gauge coupling is almost fixed by the ratio r0 at

IR. Hence the ratio of the Majorana mass of the right-handed neutrino and the Z ′ gauge boson mass is fixed by the
same ratio.
From the minimum condition of the Coleman-Weinberg potential, we also have the following relations

λ(M) = − 1

64π2

(
− dy4(M) + fg4(M)
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+O(λ2), (14)

and
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Hence the scalar mass is proportional to the β-function
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Therefore, if K is smaller but close to 1, r(M)simrc and the scalar mass becomes very small.
From the appendix, in the B − L model (??), these parameters of the RGE are given by

a =
32

9
Ng +

4

3
Nφ, b = 4 + 2N, c = 6, d = 16N, f = 96, (17)

we have

K =
32
9 Ng +

4
3Nφ + 6

4 + 2N

√
N

16
. (18)

K takes the following values for various models with (Ng, Nφ, N)

(3, 1, 1) = 1.22, (3, 1, 2) = 1.3, (3, 1, 3) = 1.27,

(2, 1, 1) = 0.982, (2, 1, 2) = 1.04, (1, 1, 1) = 0.74 (19)
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In	  the	  B-‐L	  model	  with	  	  (Ng,	  Nφ,	  N)	  
	  	  	  	  	  	  Ng	  	  :	  #	  of	  genera)ons	  coupled	  with	  the	  B-‐L	  gauge	  
	  	  	  	  	  	  Nφ	  	  :	  #	  of	  SM	  singlet	  scalars	  
	  	  	  	  	  	  N	  	  	  	  :	  #	  of	  right-‐handed	  neutrinos	  with	  large	  Yukawa	  coupling	  	
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M.Hashimoto,	  Y.Orikasa,	  SI	  	  
1310.4304	  (PRD)	  

Gauging	  (B-‐L)+	  α	  Y	  	  à	  	  K	  can	  be	  smaller	  than	  (but	  close	  to)	  1	  	  
various	  other	  models	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  Ng	  =3	  

back	 M.Hashimoto,	  Y.Orikasa,	  SI	  	  
	  1401.5944	  (PRD)	  
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If	  K	  is	  close	  to	  1,	  the	  scalar	  mass	  mφ	  becomes	  very	  light.	

Mass	  of	  the	  scalar	  is	  propor)onal	  to	  the	  β	  func)on	

K	  ~	  1	  →	  	  	  r(M)	  ~	  rc	  	  	  →	  	  	  	  mφ	  <<	  M	

à	  	  	  MνR	  ~	  MZ’	

In	  the	  flatland	  scenario,	  SM	  singlet	  Higgs	  becomes	  very	  light.	
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	  Cosmological	  implica)on	

A	  common	  issue	  in	  	  classical	  conformal	  models	  is	  	  
	  	  	  	  	  	  supercooling	  of	  the	  false	  vacuum	

K.Kohri,	  K.Shimada,	  SI	  
	  	  	  	  to	  appear	  	
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tunnelling	  rate	  is	  very	  small.	

Classical	  conformal	  models	  generically	  have	  very	  flat	  poten)al,	  	  
	  and	  	  suitable	  for	  cosmological	  applica)ons	  (inflaton).	
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Possible	  cosmic	  scenarios	

(1)  Large	  field	  infla)on	  (chao)c	  infla)on)	  with	  	  	  TRH	  <	  Tc	  =	  O(Mφ)	  	  	  
	  	  	  	  	  	  	  	  	  	  State	  falls	  in	  the	  true	  vacuum.	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  Fluctua)ons	  of	  CMB	  are	  generated	  	  during	  the	  LFI.	  

V0 is the same as in eq.(2.17). Here M̃ is related to the minimum ⟨φ⟩ = M as

M̃2 = M2 exp

(
11λ2

mix

12λ0λh

)
. (2.25)

Here we have neglected the backreaction of ⟨h⟩ to φ since ⟨h⟩ ≪ ⟨φ⟩ is assumed.

(This should be checked, or the effect may be needed to be included. !!)

The quartic coupling λH is of the order O(0.1) and much larger than λ0.

Hence the potential V (φ, h) is almost flat along the valley h2 = (|λmix|/2λH)φ2.

Since |λmix| ≪ λH , it is almost parallel to the φ direction. The normal direction,

which is almost identified with Higgs, has a curvature mH(φ)2 = λmixφ2.

3 Large Field Inflation

Here let’s assume that φ field plays a role of inflaton [4]. For large field φ ≫
M , logarithmic terms in V (φ) and its derivatives dominate and the slow-roll

parameters are given by

ϵ =
M2

Pl

2

(
V ′

V

)2

≈ 8

(
MPl

φ

)2

(3.26)

η = MPl

(
V ′′

V

)
≈ 12

(
MPl

φ

)2

= 1.5ϵ. (3.27)

Hence, in order to realise the slow-roll condition, we need very large field φ ≫
MPl.

The spectral index for the scalar perturbation is given by

ns = 1− 6ϵ+ 2η = 1− 3ϵ = 0.9603± 0.0073. (3.28)

Hence ϵ ∼ 0.013. The tensor-scalar ratio is predicted as

r = 16ϵ ∼ 0.208 (3.29)

It is independent of the choice of M or λ. By using the FRW equations

H2 =
V

3M2
Pl

, 3Hφ̇+ V ′ ≈ 0, (3.30)

the e-folding can be given by

N =

∫ tend

t
Hdt =

∫ φ

φend

V

M2
PlV

′ dφ =
1√
2MPl

∫ φ

φend

dφ√
ϵ

=
1

8M2
Pl

(φ2 − φ2
end) ∼

1

ϵ
− 1

8
. (3.31)
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. (2.25)

Here we have neglected the backreaction of ⟨h⟩ to φ since ⟨h⟩ ≪ ⟨φ⟩ is assumed.

(This should be checked, or the effect may be needed to be included. !!)

The quartic coupling λH is of the order O(0.1) and much larger than λ0.

Hence the potential V (φ, h) is almost flat along the valley h2 = (|λmix|/2λH)φ2.

Since |λmix| ≪ λH , it is almost parallel to the φ direction. The normal direction,

which is almost identified with Higgs, has a curvature mH(φ)2 = λmixφ2.

3 Large Field Inflation

Here let’s assume that φ field plays a role of inflaton [4]. For large field φ ≫
M , logarithmic terms in V (φ) and its derivatives dominate and the slow-roll

parameters are given by

ϵ =
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Pl

2
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)2
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MPl

φ
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η = MPl
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(
MPl

φ

)2

= 1.5ϵ. (3.27)

Hence, in order to realise the slow-roll condition, we need very large field φ ≫
MPl.

The spectral index for the scalar perturbation is given by

ns = 1− 6ϵ+ 2η = 1− 3ϵ = 0.9603± 0.0073. (3.28)

Hence ϵ ∼ 0.013. The tensor-scalar ratio is predicted as

r = 16ϵ ∼ 0.208 (3.29)

It is independent of the choice of M or λ. By using the FRW equations

H2 =
V

3M2
Pl

, 3Hφ̇+ V ′ ≈ 0, (3.30)

the e-folding can be given by

N =

∫ tend
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2MPl
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In the last similarity, we put φend = MPl where the slow-roll condition ceases

to hold ϵ(φend) ∼ 1. The amplitude of the curvature perturbation is given by

∆2
R =

V

24π4M2
Plϵ

=
λ0

44π2

(
φ

MPl

)2

ln
φ2

M2
=

2λ0

11π2ϵ
ln

φ2

M2

=
2λ0

11π2

ln(8M2
Pl/M

2)− ln(ϵ)

ϵ
= 2.215× 10−9. (3.32)

Up to the logarithmic factor, this condition requires that the quartic coupling

must be very small:

λ0 ∼ 10−7 × ϵ/log factor ∼ 10−10. (3.33)

For such a parameter, the scalar mass becomes very light compared to the scale

M

Mφ ∼ 10−5M. (3.34)

The scale M is not very much constrained by the conditions for the slow-roll

inflation to occur.

The normal direction perpendicular to the valley of the potential has a

curvature m2
H = λmixφ2. On the other hand, the Hubble parameter is given by

H2 = V0/3M2
Pl = (λ0/88)(φ4 ln(φ2/M2)/M2

Pl). Hence the ratio is given by

H2

m2
H

=
λ0

88λmix

φ2 ln(φ2/M2)

M2
Pl

∼
λ0N ln(8NM2

Pl/M
2)

11λmix
. (3.35)

We have used (3.31). In order to suppress the isocurvature fluctuations, it must

be smaller than 1.

4 Small Field Inflation

Another possibility of inflation is the small field inflation, starting from φ ≈ 0

and rolling down to the true minimum at φ = M. (see also [4, 8].) In the

region φ ≪ M, the potential is approximated by V ≈ V0. Then the slow roll

parameters are given by

ϵ ≈ 32

(
MPl

M

)2( φ

M

)6(
ln

φ2

M2

)2

η ≈ 24

(
MPl

M

)2( φ

M

)2

ln
φ2

M2
. (4.36)

Since φ ≪ M , we have the relation ϵ ≪ |η| and the spectral index is given by

ns ≈ 1 + 2η. (4.37)
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Since φ ≪ M , we have the relation ϵ ≪ |η| and the spectral index is given by

ns ≈ 1 + 2η. (4.37)
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B-‐L	

scalar	  	  is	  very	  light	  compared	  to	  MB-‐L	

very	  small	  quar)c	  coupling	

λ０　is	  the	  physical	  quar)c	  coupling	  at	  MB-‐L	  	  	  	

The scalar potential receives radiative corrections φ4 lnφ2 or h2 lnh2. In the

following we assume that the quartic couplings at IR scale satisfy an inequality

λH ≫ λΦ and λmix (1.3)

and include the radiative corrections only in the B-L sector. If the β-function of

the quartic coupling λΦ is positive in IR, there exists a nontrivial minimum of

the RG improved potential at ⟨φ⟩ = M and the B-L symmetry is spontaneously

broken. The masses of Z ′ and Ni are given by

mZ′ = 2gB−LM, mNi =
√
2yiMM. (1.4)

The mass of the scalar field φ is generically small in the CW mechanism because

it is proportional to the square-root of the β-function of the quartic coupling

λΦ:

mφ =
√

βλM . (1.5)

In the gauge-Yukawa-Higgs system like the B-L model, the β-function of the

quartic coupling is written as

βλ ∼ 1

16π2

[
−16

∑
y4i + 96g4B−L

]
. (1.6)

As we saw later, the β is related to the physical quartic coupling constant λ0

of φ at the breaking scale M as

βλ = 3λ0/11. (1.7)

In the CW symmetry breaking scenario, (1.5) and (1.6) lead to a relation among

mφ, mZ′ and mNi :

m2
φ +

g2B−L

π2

∑

i

m4
Ni

m2
Z′

=
3g2B−Lm

2
Z′

2π2
. (1.8)

The EWSB is triggered by the B-L symmetry breaking. If λmix is negative

and small, the scalar mixing term gives the negative square mass for the Higgs

and

⟨h⟩ =
√

−λmix

λH
M = 246 GeV. (1.9)

In [2], it was shown that, starting from vanishing Higgs potential λH = λmix = 0

at very high energy scale, both of them are radiatively generated in IR. A

negative value of the mixing λmix is generated through the gauge mixings of

U(1)Y and U(1)B−L. This guarantees the hierarchy between the EW and B-L

scales.

2

TEW	  <	  MN1	  <	  TRH	  <	  Mφ	  ~	  Tc	  <<	  MZ’	  ~	  MN2	  ~	  MB-‐L	  	  	

e.g.	  500	  GeV	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  5	  *	  104	  TeV	
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(2)	  Aber	  LFI,	  	  	  	  	  TRH1	  >	  Tc	  	  	  	  à	  state	  falls	  in	  the	  false	  vacuum.	  
	  	  	  
Second	  infla)on	  occurs	  due	  to	  V0	  >0	  	  
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reheat	  
again	  
TRH2	  <	  Tc=O(Mφ)	

In	  this	  scenario,	  fluctua)ons	  of	  CMB	  are	  generated	  during	  	  
	  the	  second	  infla)on	  (new	  infla)on).	  	

infla)on	

oscillates	



satoshi	  iso	 36	

In the last similarity, we put φend = MPl where the slow-roll condition ceases

to hold ϵ(φend) ∼ 1. The amplitude of the curvature perturbation is given by

∆2
R =

V

24π4M2
Plϵ

=
λ0

44π2

(
φ

MPl

)2

ln
φ2

M2
=

2λ0

11π2ϵ
ln

φ2

M2

=
2λ0

11π2

ln(8M2
Pl/M

2)− ln(ϵ)

ϵ
= 2.215× 10−9. (3.32)

Up to the logarithmic factor, this condition requires that the quartic coupling

must be very small:

λ0 ∼ 10−7 × ϵ/log factor ∼ 10−10. (3.33)

For such a parameter, the scalar mass becomes very light compared to the scale

M

Mφ ∼ 10−5M. (3.34)

The scale M is not very much constrained by the conditions for the slow-roll

inflation to occur.

The normal direction perpendicular to the valley of the potential has a

curvature m2
H = λmixφ2. On the other hand, the Hubble parameter is given by

H2 = V0/3M2
Pl = (λ0/88)(φ4 ln(φ2/M2)/M2

Pl). Hence the ratio is given by

H2

m2
H

=
λ0

88λmix

φ2 ln(φ2/M2)

M2
Pl

∼
λ0N ln(8NM2

Pl/M
2)

11λmix
. (3.35)

We have used (3.31). In order to suppress the isocurvature fluctuations, it must

be smaller than 1.

4 Small Field Inflation

Another possibility of inflation is the small field inflation, starting from φ ≈ 0

and rolling down to the true minimum at φ = M. (see also [4, 8].) In the

region φ ≪ M, the potential is approximated by V ≈ V0. Then the slow roll

parameters are given by

ϵ ≈ 32

(
MPl

M

)2( φ

M

)6(
ln

φ2

M2

)2

η ≈ 24

(
MPl

M

)2( φ

M

)2

ln
φ2

M2
. (4.36)

Since φ ≪ M , we have the relation ϵ ≪ |η| and the spectral index is given by

ns ≈ 1 + 2η. (4.37)
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Since φ ≪ M , we have the relation ϵ ≪ |η| and the spectral index is given by

ns ≈ 1 + 2η. (4.37)
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Since	  φ	  <<	  M	
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Since φ ≪ M , we have the relation ϵ ≪ |η| and the spectral index is given by

ns ≈ 1 + 2η. (4.37)

6

the amplitude of the curvature perturbation is given by

∆2
R ≈ V 4

0

24π2M4
Plϵ

=
3λ0M4

24× 88π2M4
Plϵ

= λ0
27ec

44π2η3
= 2.215× 10−9. (4.46)

So the coupling constant must be very small: λ0 ∼ 10−8η3. For η = 0.02,

λ0 = 6.6× 10−14 (may be 10−18, check!).

In order to suppress the isocurvature fluctuation, a necessary condition is

to impose that the mass m2
H = λmixφ2 is larger than the Hubble parameter

H2 = V0/3M2
Pl = λ0M4/88M2

Pl. Hence the parameters must satisfy

H2

m2
H

=
λ0M4

88λmixM2
Plφ

2
≪ 1. (4.47)

By using the relation (4.39) ϕ2 = η
24ec

(
M
MPl

)2

H2

m2
H

=
3ecλ0

11λmixη
∼ 2Necλ0

11λmix
≪ 1 (4.48)

5 Reheating

6 Finite temperature

The thermal corrections to the effective potential is given by

VT =
T 4

2π2

∑

n

(−1)F
∫ ∞

0
dy y2 log

[
1− (−1)F exp(−

√
m2

n

T 2
+ y2)

]
(6.49)

where F is 1 for fermions and 0 for bosons. (Check the coefficient. How to

count d.o.f.)

For a boson, it is expanded as (see for example [5])

VT =
1

2π2

[
−π4T 4

45
+

π2m2T 2

12
− Tπm3

6
− m4

32
log

m2

abT 2

]
(6.50)

and for a fermion

VT =
1

2π2

[
−7π4T 4

360
+

π2m2T 2

24
+

m4

32
log

m2

afT 2

]
. (6.51)

The expansion is valid for m/T < 1. m is a function of φ and in our model

given by

Mφ =

√
6λ0

11
φ, MZ′ = 2gB−Lφ, MN =

√
2YNφ. (6.52)

The most relevant term is terms proportional to m2T 2 which give T 2φ2 terms in

the effective potential for φ. Furthermore the third term in the boson case gives
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For a boson, it is expanded as (see for example [5])

VT =
1

2π2

[
−π4T 4

45
+

π2m2T 2

12
− Tπm3

6
− m4

32
log

m2

abT 2

]
(6.50)

and for a fermion

VT =
1

2π2

[
−7π4T 4

360
+

π2m2T 2

24
+

m4

32
log

m2

afT 2

]
. (6.51)

The expansion is valid for m/T < 1. m is a function of φ and in our model

given by

Mφ =

√
6λ0

11
φ, MZ′ = 2gB−Lφ, MN =

√
2YNφ. (6.52)

The most relevant term is terms proportional to m2T 2 which give T 2φ2 terms in

the effective potential for φ. Furthermore the third term in the boson case gives

8

λ０	  =	  10
-‐16	

The smallness of ϵ makes the tensor-scalar ratio almost vanishing. We can write

the field value ϕ ≡ φ/M in terms of the slow roll parameter η by solving

ϕ2 lnϕ2 =
η

24

(
M

MPl

)2

≪ 1. (4.38)

It can be approximately solved as

ϕ2 =
|η|
24ec

(
M

MPl

)2

, (4.39)

where c ≈ ln ln(24M2
Pl/ηM

2). For example, if we take M = 10 TeV and

η = −0.01, c ∼ 4.3 and lnϕ2 = −78.

The e-folding N is given by

N =
1

MPl

∫ φ

φend

V

V ′dφ =
M2

M2
Pl

∫ ϕ

ϕend

dϕ

8ϕ3 lnϕ2

=
M2

4M2
Pl

(Ei(−2 lnϕend)− Ei(−2 lnϕ)) (4.40)

where

Ei(x) =

∫ ∞

x

e−u

u
du (4.41)

is the exponential integral function. But it is more convenient to rewrite it

in terms of the slow roll parameter η. The inflation stops when the slow roll

conditions are violated. Since ϵ ≪ |η|, this condition is given by ηend ∼ 1.

During an inflationary period with an e-folding N = 50, lnϕ2 ≈ ln(M2/M2
Pl) is

almost constant. Then

N ≈ M2

16M2
Pl ln(M

2
Pl/M

2)

(
1

ϕ2
− 1

ϕ2
end

)
. (4.42)

By using an approximate formula η ≈ −24(M2
Pl/M

2)ϕ2 lnM2
Pl/M

2, we have

N ≈ 3

2

(
1

|η| −
1

|ηend|

)
. (4.43)

Hence the slow roll parameter at e-folding N is given by

η =
−1

2N/3 + 1/|ηend|
. (4.44)

If we take N = 50, |ηend| = 1, η = 0.03. For (N = 60, ηend = 0.1), η = 0.02.

By using

ϵ ≈ M4

M4
Pl

|η|3

24× 18ec
, (4.45)

7

à	  η	  ~	  -‐	  0.025	  	  à	  ns	  =0.95	  	

In	  order	  to	  be	  consistent	  with	  the	  amplitude	  of	  scalar	  perturba)on	  	

à	  Mφ	  ~	  10-‐8	  MB-‐L	

r	  ~	  0	

TEW	  <	  MN1	  <	  TRH	  <	  Mφ	  ~	  Tc	  <<	  MZ’	  ~	  MN2	  ~	  MB-‐L	  	  	

e.g.	  500	  GeV	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  5	  *	  107	  TeV	



Conclusions	  	  
・	  LHC	  results	  tell	  us	  about	  the	  shape	  of	  the	  Higgs	  poten)al	  
	  	  	  	  	  Constraint	  on	  susy	  	  à	  Naturalness	  problem	  à	  classical	  conformal	  
	  	  	  	  	  126	  GeV	  à	  flat	  Higgs	  poten)al	  at	  Planck	  scale	  	  
	  
・	  Classically	  conformal	  models	  with	  flat	  poten)al	  at	  Planck	  	  
	  	  	  	  	  Experimentally,	  SM	  is	  NOT	  sufficient.	  
	  	  	  	  	  	  	  	  	  	  	  (neutrino	  mass,	  baryon	  number,	  DM	  etc.	  )	  
	  	  	  	  	  Theore)cally	  too.	  	  Radia)ve	  genera)on	  of	  EW	  scale	  needs	  BSM.	  
	  
[	  Origin	  of	  Higgs	  poten)al	  (EWSB)	  ]	  
	  à	  classical	  conformal	  B-‐L	  model	  with	  flat	  boundary	  condi)on	  at	  MPL	  
	  	  	  	  	  	  	  	  	  	  	  	  predic)on	  :	  	  TeV	  scale	  B-‐L	  (or	  further	  extended)	  sector	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  very	  light	  SM	  singlet	  scalar	  	  	  	  	  	  MΦ	  <	  	  MZ’	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  also	  TeV	  scale	  seesaw	  	  MνR	  
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	  Various	  types	  of	  Coleman-‐Weinberg	  models	

SM with flat potential�
��There is no electroweak symmetry breaking at 
the classical level. 
    We need to consider origin of  the symmetry 
breaking. 

Coleman-Weinberg Mechanism�
(radiative symmetry breaking)�

SM with flat potential�
��There is no electroweak symmetry breaking at 
the classical level. 
    We need to consider origin of  the symmetry 
breaking. 

Coleman-Weinberg Mechanism�
(radiative symmetry breaking)�

H	 H	

But	  CW	  does	  not	  work	  in	  SM.	  Introduce	  φ	  sector.	

SM with flat potential�
��There is no electroweak symmetry breaking at 
the classical level. 
    We need to consider origin of  the symmetry 
breaking. 

Coleman-Weinberg Mechanism�
(radiative symmetry breaking)�

H	

SM with flat potential�
��There is no electroweak symmetry breaking at 
the classical level. 
    We need to consider origin of  the symmetry 
breaking. 

Coleman-Weinberg Mechanism�
(radiative symmetry breaking)�

φ	

＋	

Coleman	  -‐	  
Weinberg	  (1973)	

Meissner	  Nicolai	  (2007)	  
Foot	  et.al	  (2007)	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
Iso	  Okada	  Orikasa	  (2009)	  
Holthausen	  Lindner	  Schmidt	  
	  	  (2009)	  
Hill,	  Lykken	  
and	  many	  others	  aber	  LHC	  -‐	  λmix

	  H2Φ2	  	  coupling	  assumed	

(1)	  	  original	  type	

(2)	  	  SM	  +	  addi)onal	  sector	
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SM with flat potential�
��There is no electroweak symmetry breaking at 
the classical level. 
    We need to consider origin of  the symmetry 
breaking. 

Coleman-Weinberg Mechanism�
(radiative symmetry breaking)�

φ	

＋	

Iso	  Orikasa	  (2012)	  

H	
flat	  poten)al	

＋	

H	
flat	  poten)al	

φ	
flat	  poten)al	 Chung	  Jung	  Lee	  	  (2013)	  

Hashimoto	  Iso	  Orikasa	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2013,	  14)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

126	  GeV	  (stability)	

-‐	  λmix	  H2	  Φ2	  	  coupling	  radia)vely	  generated	  via	  U(1)	  mixing	

Everything	  can	  be	  radia)vely	  
	  generated.	

(3)	  	  Radia)ve	  genera)on	  of	  V(H)	  and	  scalar	  mixing	

(4)	  Flatland	  scenario	
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Important	  issues	  to	  be	  understood	  
	  
(1)  Supercooling	  problem	  
	  	  	  	  2	  approaches	  :	  	  	  	  enhance	  tunneling	  rate	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  or	  	  	  	  	  combined	  with	  infla)onary	  scenario	  
	  	  	  	  infla)on	  à	  poten)al	  becomes	  extremely	  shallow	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Mφ　<<	  	  MB-‐L	  	  
(2)	  Planck	  scale	  boundary	  condi)on	  	  	  
	  	  	  	  	  	  	  	  	  gauge-‐Higgs	  unifica)on	  at	  Planck	  scale	  
	  	  	  or	  	  Nonsupersymmetric	  vacuum	  of	  superstring	  	  	  
	  	  	  	  	  	  	  	  	  with	  	  	  	  GUT	  	  broken	  at	  Mstring	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  stable	  massless	  scalar	  with	  flat	  poten)al	
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You	  are	  welcome	  to	  visit	  KEK	  
	  	  	  based	  on	  MOU	  between	  us.	

Thank	  you	  for	  your	  auen)on.	


